Съдържание:
- Стъпка 1: Материали
- Стъпка 2: Búsqueda Al Azar
- Стъпка 3: Evolución Y Definiciones
- Стъпка 4: El Algoritmo
- Стъпка 5: Ел Кодиго
- Стъпка 6: Funcionando Y Retos
Видео: Комплект Ciencia Y Arte: Algoritmo Genético (Vida Artificial): 6 стъпки
2024 Автор: John Day | [email protected]. Последно модифициран: 2024-01-30 07:53
Los algoritmos genéticos son probablemente una de las cosas más interesantes de la computación (en mi opinión). Básicamente se toma la idea de evolución de la biología, y se applica a un algoritmo en una computadora para resolver un problem.
El algoritmo genético es parte de lo que se conoce como algoritmos evolutivos en el mundo de las ciencias de la computación. Acá hacemos un ejemplo sencillo, con el fin de aprender sobre el algoritmo. Usamos el Circuit Playground (CP) de Adafruit para hacer el ejercicio.
Imaginen el CP que es un ser vivo, y que se debe adaptar a las condiciones cambiantes de luz. El CP, debe buscar la forma más eficiente de prender sus leds, para obtener la Mayor cantidad de luz posible según su sensor de luz. Para lograrlo además debe hacerlo encendiendo la menor cantidad de leds posibles. Entonces maximiza la luz, al mismo tiempo que minimiza la cantidad de leds. Acá trataremos de hacerlo con un algoritmo genético.
РЕКЛАМА: Este es un tema para estudiantes AVANZADOS
Стъпка 1: Материали
Просто:
- Circuit Playground (o cualquier Arduino con lids y sensor de luz)
- Батерия
- USB кабел
- Algo para generar luz y sombra para pruebas
Стъпка 2: Búsqueda Al Azar
Imaginemos un mono, apretando letras en el teclado de una computadora, el mono simplemente presiona las letras al azar. Si hay unas 50 letras en el teclado, cada letra (si el mono presiona de manera Independiente cada vez), tiene una probabilidad de 1/50 = 0.02 de ser presionada.
Ahora bien, digamos que queremos que el mono escriba la palabra "banano", ¿Podrá el mono escribir la palabra? La respuesta corta es SI !!!
La respuesta larga es que si lo puede hacer pero tomará un tiempo largo para resoververlo. Vamos esto estadísticamente. La probabilidad de que el mono escriba "banano" es entonces la probabilidad connenta, esto es:
(1/50) x (1/50) x (1/50) x (1/50) x (1/50) x (1/50) = (1/50)^6
Esto es igual a 1 sobre 15 625 000 000, es decir la probabilidad de que el mono escriba "banano", es 1 en 15 millones… muy poco вероятно! Dicho de otro modo, es muy poco вероятно que un mono escriba la palabra "banano" escribiendo teclas al azar, ah, pero si tuviéramos 15 millones de monos escribiendo, es posible que uno de ellos escriba la palabra "banano". entonces poco вероятно, но не невъзможно.
Formalicemos esta idea un poco. SI (1/50)^6 es la probabilidad de escribir "banano", entonces, 1- (1/50)^6 es la probabilidad de NO escribirlo. Si un mono intenta n veces, entonces, la probabilidad P de no escribir la palabra "banano" en n intentos sería:
P = [1- (1/50)^ 6]^ n
As por por ejemplo si intento una vez, P = 1, si intento un millón de veces, P = 0.999936, pero para 10 mil millones, P = 0.53, y mientras más grande se n, más me acerco a P = 0, es decir, con un numero infinito de intentos, puedo estar seguro de que el mono va a escribir la palabra "banano".
Lo que sí, no tenemos tiempo infinito, es decir se puede buscar una solución al azar, pero, el azar solo tardaría mucho tiempo. En pocas palabras, la fuerza bruta no es una forma efectiva de buscar una solución
Lo maravilloso es que la naturaleza busca al azar, pero de manera constructiva, es decir, busca de forma aleatoria pero manteniendo una buena solución y haciendo modificaciones a veces fuertes a veces pequeñas de ellas. Esa es la manera en que el algoritmo genético funciona, tomando ideas del como se genera la variabilidad genética en los seres vivos, e inventando un algoritmo para hacerlo en computadora, con el fin de solucionar un problem. Entonces aunque contiene elementos de azar, también tiene memoria y hace que acad intento de buscar la solución, no sea Independiente del intento anterior.
ЗАБЕЛЕЖКА: Busquen información sobre el teorema del mono infinito
Стъпка 3: Evolución Y Definiciones
La evolución
Un algoritmo genético (AG) е un algoritmo que permite encontrar unalución a problemmas difíciles de resover. El AG, se basa en tres principios principales de herencia Darwiniana:
- Херенсия: Los hijo reciben las características de sus padres. En el AG signific que las nuevas soluciones heredan lo alcanzado por soluciones anteriores
- Вариант: Debe haber un mecanismo para Introducir variedad. en el AG, означава que se debe agregar variabilidad de alguna manera para encontrar nuevas soluciones
- Избор: Hay un mecanismo en la cual se seleccionan los mejores. En el AG, hay una función de "fitness" que permite deterar cual solución es mejor
Acá no me voy a meter en los detales de como funciona la evolución de seres vivos, sino que quiero entrar de una vez a la explicación del Algoritmo Genético.
Определения
Para poder facilitar обяснява алгоритмо, debemos definir algunas cosas antes. Estas definiciones son comunes en cualquier explicación de algoritmo genético que encuentren, y les facilitará entender la literatura en las redes.
- Uno de los primeros pasos es "codificar" el problem, esto quiere decir que debemos tener una reprezentación de el problem para poder trabajarlo en el CP. Acá lo hacemos de manera sencilla. Como se muestra en a foto, tenemos 10 LEDS que pueden estar encendidos "1" o apagados "0", entonces tenemos un arreglo con 10 elementos 0 y 1. Así entonces 101000000 означава que los leds 0 y 2 están encendidos, y el resta апагадос. y 0010011010, que los leds 2, 5, 6 y 8 están encendidos
- Una Población es un contranto de posibles combinaciones de leds encendidos (ver la imagen de población), estas pueden ser iguales o diferentes. Se le llama un Cromosoma a un elemento en la población. Entonces un cromosoma, no es más que una reprezentación de los LEDS encendidos y apagados del CP
- Una mutación, es cambiar al azar uno o varios LEDS, como se muestra en la foto, donde arbitrariamente la posición 5 cambia de apagado a encendido
- La recombinación, consiste en tomas dos cromosomas, escoger un punto de cruzamiento, e intercambiar la información entre ambos (ver el diagrama)
- Una función de evaluación за фитнес, es un критерий que permite evaluar que tan buenos son cada uno de los cromosomas de la población para seleccionar el mejor. En este caso, voy a trabajar con la intenzidad de de luz y la cantidad de leds encendidos
Стъпка 4: El Algoritmo
пасо пасо
- Crear una población de muchos cromosomas inicializados al azar
- Оценете cual es el mejor con la función de "fitness"
- Copiar el mejor recombinando con el segundo mejor al resto de la población
- Aplicar mutación a toda la población
- Повторете част 2
Ejemplo
Como expliqué en las definiciones, una tira (cromosoma) 1000101010,represens los leds encendidos "1" y apagados "0", en el circuit playground. Обяснение на определена функционалност на "фитнес" като:
фитнес = (lectura de luz) x 0,5 - (número de leds) x 0,5
Noten como restamos el numero de leds en la fórmula, pues queremos la mejor luz con la cantidad menor de leds, entonces si una solución es similar en luz pero con menos leds, seleccionaremos esa.
Ahora entonces encendemos los leds korespondientes a cada cromosoma y evaluamos su fitness, como se muestra en la figura. Noten como en el ejemplo tenemos:
0011100000 фитнес = 98,5
1011100001 фитнес = 102,5
1010101011 фитнес = 102
Los de fitness más alto son 102,5 y 102, seleccionamos esos, y hacemos recombinación y mutación como se muestra en la imagen, lo que nos permite terminar con una nueva población, 1011100001
0011101011
1010100011
Esta nueva población nuevamente evaluamos su fitness and así continuamos. A medida que llega a una solución óptima, aunque sigue probando, se mantiene hasta que haya cambios en el ambiente.
Стъпка 5: Ел Кодиго
El código lo pueden изтеглете в mi GitHub. No voy a explicar los detales de la librería "cromosome.h", sino nada más el algoritmo genético, como es utilizado en el código principal.
Código principal
El siguiente código crea una población de 20 cromosomas:
#дефинирайте N 20
население поп (N);
El objeto es население y lo hemos llamado поп. Esto inmediatamente ctrea una pobación de 20 cromosomas, inicializados con todos ceros. En el setup, agregamos la línea:
pop.mutateChromosomes (0.5, 0);
Para cambiar aleatoriamente cada cromosoma con una probabilidad de 0.5, iniciando desde el cromosoma 0. En el loop tenemos el algortimo, primero hacemos crossover:
pop.copyCrossover (2);
Luego aplicamos mutación con una probabilidad baja (0.05), e iniciando del cromosoma 1 para mantener el mejor que hemos obtenido en la población (el cromosoma 0 es el mejor)
поп.мутатХромозоми (0.05, 1);
Y evaluamos con la función de evaluación, que explico más abajo
оцени ();
Luego ordenamos los cromosomas de Mayor a menor fitness (usando bubble sort), esto facilita el processo de recombinación, pop.sort ();
Allí está todo. Ahora veamos la función de evaluación que es importante
Функция за оценка
El codigo de evalu () е:
void evaluate () {
for (int i = 0; i <pop.n; i ++) {setPixels (i); // дава LED време за включване на забавяне (100); фитнес (i); }}
Vean que simplemente prendemos los leds korespondientes al cromosoma (eso es lo que hace setPixels ()), y evaluamos su fitness, con la función, void fitness (int a) {
pop.fitness [a] = 0,5 * float (CircuitPlayground.lightSensor ()) - 0,5 * float (pop.countBits (a)); }
Almacenamos el valor de fitness de cada cromosoma en pop.fitness
Стъпка 6: Funcionando Y Retos
Функционандо
En el video se ve como va adaptando de apoco a las diferentes condiciones de luz. Siempre encuentra una buena solución. Si lograste entender este instructable, te felicito, los algoritmos genéticos son un тема difícil en computación, pero eso es lo que lo hace más emocionante.
De alguna marea al dejar funcionando el CP con el algoritmo, parece casi como un ser vivo explorando las condiciones y evolucionando para mejorar. En este caso están ocurriendo muchas iteraciones de eovlución en poco tiempo, para un organismo vivo son mucho más lentas
de cierto modo el algoritmo sirve para encontrar la mejor solución, dadas ciertas condiciones. Se puede correr el algoritmos para determinar lo mejor en cada situación, y luego dejar estas definidas en el CP, pero en este ejemplo dejamos que el algoritmo siempre esté explorando.
Si se dejan muchas mutaciones, verán como el algoritmo es algo inestable y le va a costar llegar и una situación optima.
Коментар Финал
El ejemplo utilizado es ilustrativo, y es para facilitar el uso de la librería. El reto planteado de mejorar la luz con el menor número de LEDS, es simple y hasta trivial, que probablemente se puede solucionar de manera más rápida con otros métodos. Sin embargo, si lo vemos desde el punto de vista de seres vivos, la evolución organiza, utiliza algo como un algoritmo genético para búsquedas no lineales, entonces, algo como optimizar la luz, es un problem que en la naturaliza tiene sentido (me disculpan да ме пуснеш еспесо!)
Ретос
- Buscar un problem de optimización más complicado con una función de "fitness" más compleja
- Mejorara el desempeño, cambiando probabilidad de mutación, re-combinación, aumentando la población, cambiando tiempos (esos забавя por allí metidos)
- Приложете един робот, за да разберете ситуацията
- Estudiar meiosis, para aprender sobre mecanismos de evolución
- Estudiar a fondo los algoritmos genéticos (hay libros completos en el tema)
Препоръчано:
Практически комплект за SMD запояване или Как се научих да спра да се притеснявам и да обичам евтиния китайски комплект: 6 стъпки
Практически комплект за SMD запояване или Как се научих да спра да се притеснявам и да обичам евтиния китайски комплект: Това не е инструкция за запояване. Това е инструкция за това как да се изгради евтин китайски комплект. Поговорката е, че получавате това, за което плащате, и ето какво получавате: Лошо документирано. Съмнително качество на частите. Няма поддръжка.Защо да купувате
Комплект Ciencia Y Arte: Cómo Cargar Código Al Детска площадка: 4 стъпки
Kit Ciencia Y Arte: Cómo Cargar Código Al Playground: Ac á explicamos como se " sube " el c ó диго. EL c ó digo de cada proyecto est á en cada instructable, sin embargo puede descargar todo el c ó digo en el GitHub
Комплект Ciencia Y Arte: Ordenando Lists (Сортиране на балончета): 4 стъпки
Kit Ciencia Y Arte: Ordenando Lists (Bubble Sort): En el mundo de las ciencias de la computaci ó n, sabre ordenar lists es como sabre escribir. Es una buena manera de ver como los algoritmos son una manera de hacer las cosas en una computadora, y que la forma directa de hacer algo no es la me
Комплект Ciencia Y Arte: Máquinas Que Aprenden Sonido: 4 стъпки
Комплект Ciencia Y Arte: Máquinas Que Aprenden Sonido: Aprender de inteligencia изкуствен es mucho m á s f á cil de lo que parece. El primer paso es entender el funcionamiento de una de las unidades m á s simples en programaci ó n, que por analog í a con el cerebro humano, es l
Комплект Ciencia Y Arte: Un Makey Makey a Otro Nivel: 4 стъпки (със снимки)
Kit Ciencia Y Arte: Un Makey Makey a Otro Nivel: El Makey Makey е un dispositivo electr ó nico muy популярен en educaci ó n, pues con el se pueden hacer r á pidamente ejercicios de computaci ó n ocute e n acuble e interacia con computadoras.El Makey Makey, no es m